
　２　　次の条件によって定められる数列�� �QD �について考える。
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　　（１）� �D ���� �D �を求めよ。また�Q�� �のとき� QD ����を示せ。

　　（２）� QE  
�

�Q �D
���

�

QD
�とおく。� �Q �E �を� QE �を用いて表せ。また数列�� �QE �

　　　　　の一般項を求めよ。

　　（３）数列�� �QD �の一般項を求めよ。　　　　　　　　　　　　

　　　　　　　　

　　　　　　　　　　　　　　　　　　解法の糸口
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　　　　　　�Q�� �のとき　 QD ����の証明は　数学的帰納法を適用
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に着目して� �Q �E �� QE � �を考えると　実にうまく　

　　　　��　� �Q �E �を� QE �で表すことが出来そう���

　　　　③　二項間の漸化式は　特性方程式を活用して変形
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　　　　⑤　最終題は検算

　　　　　　　　　　　

　　　　　　　　　　　　　　　　　　　解答

　　　　　　　　　今後　詳細な解答はメルカリで参照してください

　　　　　　　　　　　　　　　　　　　感想

　　　　　　久しぶりの階差数列に関する問題　寝言公式として扱ってきた公式　

　　　　　　をここでは再度公式導入の基本から解答しておきました。受験生に

　　　　　　とって　チョット計算が複雑な良問となっていますね
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